

AOAC 2023

Manami Kobayashi¹; Nozomi Maeshima¹; Dominika Gruszecka²; Naomasa Oshiro³ 1 Shimadzu Corporation, Kawasaki-city, Japan; 2 Shimadzu Scientific Instruments, Columbia, MD; 3 Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki-city, Japan

Introduction

Ciguatera Fish Poisoning is the world's most prevalent source of food poisoning, and it is caused by ciguatoxins (CTXs), thermostable polyether toxins produced by benthic dinoflagellates. CTXs are found in natural samples in trace amounts, and they pose neurotoxic effects at concentrations as low as 0.2 µg/kg. The US FDA and EFSA recommends a control level of 0.01 µg CTX1B equivalent/kg. Previously published work (Yogi, K. et. al.; *Anal. Chem.* 2011, 83, 8886-8891)¹⁾ using a LC/MS/MS instrument achieved the control levels monitoring the sodium adducts of the targets of interest ([M+Na]⁺ >

[M+Na]*). In this study, we optimized a highly sensitive method for the detection of CTXs using the sodium and lithium adducts, [M+Na]* and [M+Li]* ions, by adding very small amounts of alkali metals, such as Na+ and Li* to the mobile phase. This work demonstrates that CTXs can be successfully detected at the low concentrations recommended by FDA with good chromatographic separation by LC/MS/MS. We report in this poster the new analytical conditions and accuracy of the method using [M+Li]*.

Materials and Methods CTXs reference materials

1)

qNMR quantified reference materials of five CTX analogs were provided by JFRL (Japan Food Analysis Center) ²⁾.

2)

CTX mix standard solution containing nine CTX analogs was prepared at NIHS (National Institute of Health Science).

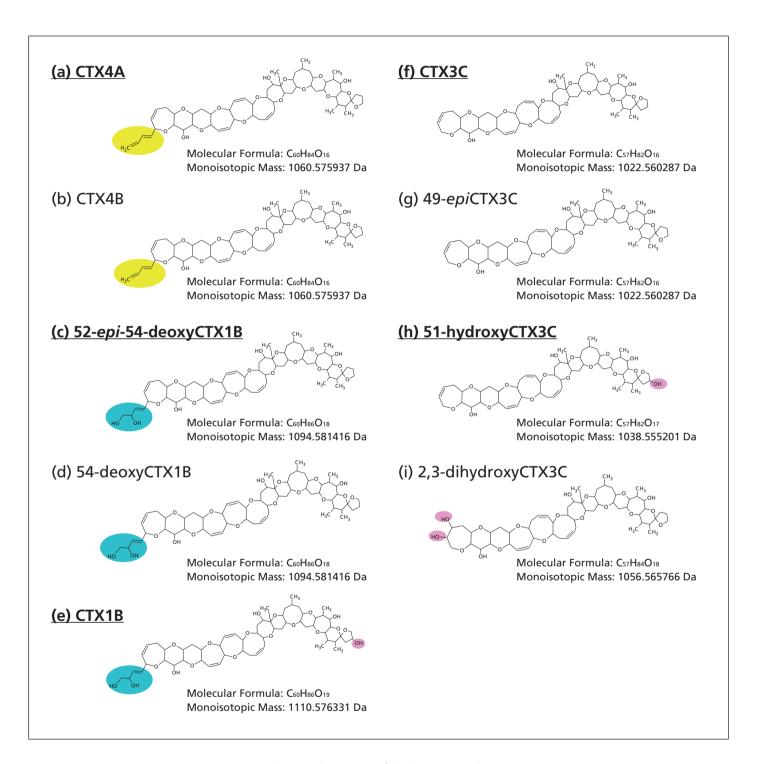


Figure 1 The structure of the nine compounds.

JFRL reference materials: (a) CTX4A, (c) 52-epi-54-deoxyCTX1B, (e) CTX1B,

(f) CTX3C, (h) 51-hydroxyCTX3C

Analytical conditions

The analysis was performed with the LCMS-8060NX coupled with a Nexera™ X3 UHPLC system (Shimadzu Corporation, Kyoto, Japan), following conditions summarized in Table 1.

Table 1 Analytical conditions of UHPLC and MS

UHPLC conditions

Equipment : Nexera X3 system (Shimadzu Corporation)

Column : Shim-pack VeloxTM C18 (50 mm \times 2.1 mm I.D., 1.8 μ m)

Mobile phase A : water/formic acid (1000 : 1, v : v)

Mobile phase B for Na Adduct: acetonitrile/formic acid/0.05 M sodium hydroxide aqueous solution (1000:1:1, v:v:v) Mobile phase B for Li Adduct: acetonitrile/formic acid/0.1 M lithium hydroxide monohydrate solution (1000:1:1, v:v:v)

Flow rate : 0.4 mL/min (0.6 mL/min from 12.01 to 17.0 min)

Time program : B Conc. 40 % $(0.0 - 2.5 \text{ min}) \rightarrow 85 \% (12.0 \text{ min}) \rightarrow 100 \% (12.01 - 17.0 \text{ min}) \rightarrow 40 \% (17.01 - 20 \text{ min})$

Column temperature : 40 °C Injection volume : 5 μ L

The flow was loaded into the MS detector between 2.5 to 12.5 min using a flow switching valve.

MS conditions

Equipment : LCMS-8060NX

Ionization : ESI, Positive MRM mode

IF/Ion focus voltage: +1 / +4 KV

IF/DL/HB temperature: 350 °C/300 °C/400 °C

Nebulizer gas : 3 L /min Heating gas : 15 L/min Drying gas : 5 L/min CID gas pressure : 270 Kpa

Collision Energy : -40 V: CTX1B, 2,3-dihydroxyCTX3C, 52-epi-54-deoxyCTX1B, 54-deoxyCTX1B, 51-hydroxyCTX3C

-30 V: 49-epiCTX3C, CTX3C, CTX4A, CTX4B

MRM transition for Na Adduct: [M+Na]+> [M+Na]+

m/z 1133.60: CTX1B

m/z 1079.60: 2,3-dihydroxyCTX3C

m/z 1117.60: 52-epi-54-deoxyCTX1B & 54-deoxyCTX1B

m/z 1061.60: 51-hydroxyCTX3C *m/z* 1045.60: 49-*epi*CTX3C & CTX3C *m/z* 1083.60: CTX4A & CTX4B

MRM transition for Li Adduct: $[M+Li]^+ > [M+Li]^+$

m/z 1117.60: CTX1B,

m/z 1063.60: 2,3-dihydroxyCTX3C

m/z 1101.60: 52-epi-54-deoxyCTX1B & 54-deoxyCTX1B

m/z 1045.60: 51-hydroxyCTX3C *m/z* 1029.60: 49-*epi*CTX3C & CTX3C *m/z* 1067.60: CTX4A & CTX4B

Results

Formation of [M+Na]+ or [M+Li]+ ion

The addition of Na⁺ or Li⁺ to the mobile phase is known to increase the formation of sodium or lithium adducts through cataionization⁴. A trace amount of alkali metal was added to the mobile phase in order to obtain the desired ions, either [M+Na]⁺ or [M+Li]⁺ (Table 1). The specific ions from CTX1B are shown in Fig. 2 (SIM spectra)

as an example. Same results were obtained with the other target compounds analyzed in this study. When Li⁺ was added to the mobile phase, [M+Na]⁺ was not detected. These results suggested that enhanced sensitivity could be achieved using alternative ions, such as [M+Li]⁺.

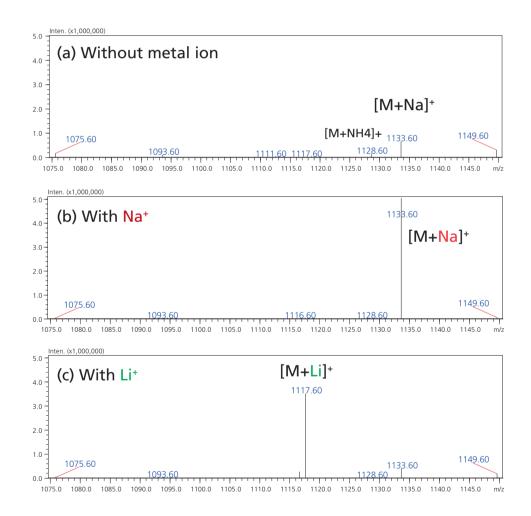


Figure 2 Multi spectra of CTX1B by different mobile phases (SIM).

Optimization of Collision energy (CE)

Unfortunately, $[M+Na]^+$ and $[M+Li]^+$ precursor ions did not provide any useful product ions. Thus, we optimized the CE to provide the highest S/N when monitor $[M+Na]^+$ > $[M+Na]^+$ or $[M+Li]^+$ > $[M+Li]^+$ on MRM analysis mode. Optimized CE for CTX1B are shown in Table 1. The best CE of the remaining 8 analogs were optimized in similar way.

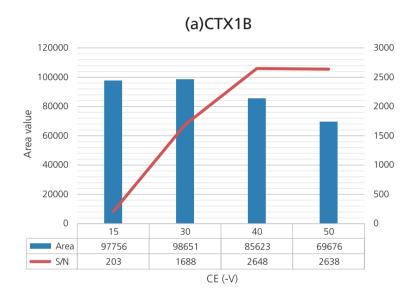


Figure 3 The relationship between the CE and the peak area or S/N.

Improved peak separation and sensitivity

In Fig. 4 ((a), (b), (c)), separation of the target compounds using previously reported conditions ((a); Oshiro, N.et. al., *J. Mar. Sci. Eng.* 2023, 11, 242)⁵⁾, Na-added mobile phase (b), and Li-added mobile phase (c) is compared. 2,3-dihydroxyCTX3C and 51-hydroxyCTX3, 49-*epi*-CTX3C and CTX3C, CTX4A and CTX4B showed dramatically

better separation under new conditions (Fig.4 (b)(c)). 6 analogs other than 2,3-dihydroxyCTX3C and 51-hydroxyCTX3 and CTX3C had good sensitivity in Na-added mobile phase. It was confirmed that the sensitivity of the 9 analogs of interest was comparable when using Li-added mobile phases.

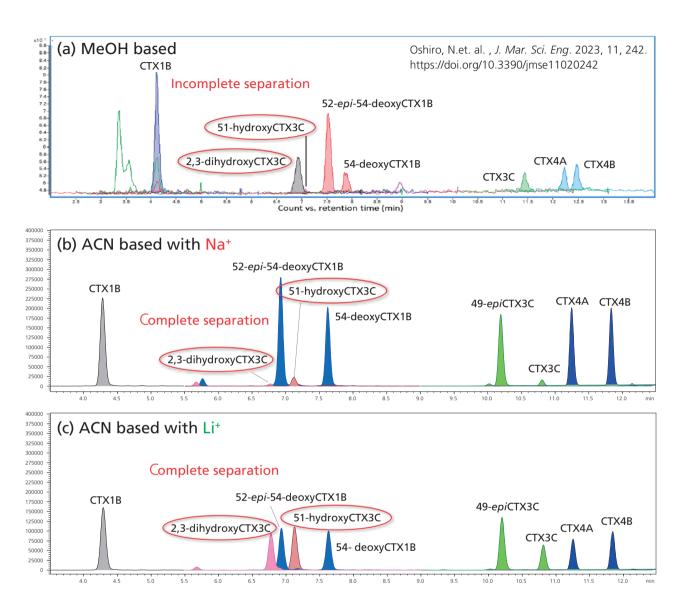


Figure 4 MRM chromatograms of 9 analogues (1 ng/mL NIHS-CTX-Mix ver.2)

Evaluation of the limit of quantification(LOQ)

Calibration curves were generated using JFRL reference materials to confirm the sensitivity of [M+Li]*> [M+Li]*. Each chromatogram at the lowest point of the calibration curve is shown in Figure 5. The range of the calibration curve was determined so that the average Accuracy in 3 replicate analyses of each calibration point was 100±5%,

and the lowest point was designated as the LOQ. When 1 mL of the assay solution was prepared from 5 g of fish meat, the LOQs of the five standard substances adopted as the lowest point of the calibration curve in this method ranged from 0.0004 to 0.0012 µg/kg (Table 2).

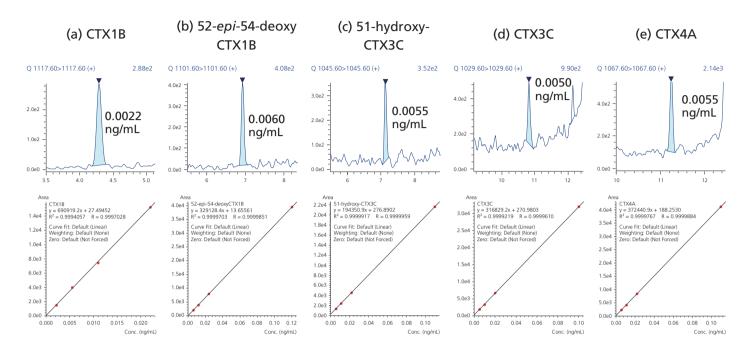


Figure 5 MRM chromatograms of the lowest point of the calibration curve and the calibration curve (JFRL Reference Materials)

Table 2 LOQ, reproducibility and accuracy of each analogue (n=3)

	LOQ (ng/mL)	LOQ (µg/kg)	Retention time (min)	%RSD (Area)	Accuracy (%)	S/N
CTX1B	0.0022	0.0004	4.289	11.02	98	81
52-epi-54-deoxyCTX1B	0.0060	0.0012	6.931	5.38	105	64
51-hydroxy-CTX3C	0.0055	0.0011	7.121	8.76	103	22
CTX3C	0.0050	0.0010	10.815	12.32	102	22
CTX4A	0.0055	0.0011	11.250	17.28	105	36

 $\mbox{S/N}$ was calculated by rms method with 0.5 min near the peak as noise.

Conclusions

- The new optimized LC/MS/MS conditions enable sensitivity exceeding the FDA tolerance level for CTXs.
- These results suggest that a general-purpose LC-MS/MS from any manufacturer can be used for highly sensitive analysis of CTXs.

Acknowledgements

We are grateful to Dr. Takeshi Yasumoto for providing the reference materials of CTXs.

Reference

- 1. Yogi, K.; Oshiro, N.; Inafuku, Y.; Hirama, M.; Yasumoto, T.; Detailed LC-MS/MS analysis of ciguatoxins revealing distinct regional and species characteristics in fish and causative alga from the Pacific, *Anal. Chem.* 2011, 83, 8886-8891
- 2. Kato T.; Yasumoto T.; Quantification of Representative Ciguatoxins in the Pacific Using Quantitative Nuclear Magnetic Resonance Spectroscopy, *Mar. Drugs* 15, 309 (2017)
- 3. Jia Jun Wu et.al.; Validation of an accelerated solvent extraction liquid chromatography–tandem mass spectrometry method for Pacific ciguatoxin-1 in fish flesh and comparison with the mouse neuroblastoma assay, *Anal Bioanal Chem* (2011) 400:3165–3175
- 4. Klijnstra, Mirjam D., and Arjen Gerssen.; A Sensitive Lc-Ms/Ms Method for Palytoxin Using Lithium Cationization, *Toxins* 10, no. 12 (2018): 537
- 5. Oshiro, N.et. al.; Analytical Studies on Ciguateric Fish in Okinawa, Japan (II): The Grouper Variola albimarginata. *J. Mar. Sci. Eng.* 2023, 11, 242.

Patents

This analytical method is patent pending. PCT/JP2022/045132, 2022-089617(JP)

Nexera and Shim-pack Velox are trademarks of Shimadzu Corporation.

The products and applications in this presentation are intended for Research Use Only (RUO). Not for use in diagnostic procedures.

First Edition: October, 2023

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Company names, products/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation, its subsidiaries or its affiliates, whether or not they are used with trademark symbol "TM" or "®".

Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.